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Finite-sized gas bubble motion in a blood vessel: Non-Newtonian effects
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We have numerically investigated the axisymmetric motion of a finite-sized nearly occluding air bubble
through a shear-thinning Casson fluid flowing in blood vessels of circular cross section. The numerical solution
entails solving a two-layer fluid model—a cell-free layer and a non-Newtonian core together with the gas
bubble. This problem is of interest to the field of rheology and for gas embolism studies in health sciences. The
numerical method is based on a modified front-tracking method. The viscosity expression in the Casson model
for blood (bulk fluid) includes the hematocrit [the volume fraction of red blood cells (RBCs)] as an explicit
parameter. Three different flow Reynolds numbers, Re,p,=p;Upnaxd/ fapps in the neighborhood of 0.2, 2, and
200 are investigated. Here, p; is the density of blood, U,y is the centerline velocity of the inlet Casson profile,
d is the diameter of the vessel, and w,, is the apparent viscosity of whole blood. Three different hematocrits
have also been considered: 0.45, 0.4, and 0.335. The vessel sizes considered correspond to small arteries, and
small and large arterioles in normal humans. The degree of bubble occlusion is characterized by the ratio of
bubble to vessel radius (aspect ratio), A, in the range 0.9<\<1.05. For arteriolar flow, where relevant, the
Fahraeus-Lindqvist effects are taken into account. Both horizontal and vertical vessel geometries have been
investigated. Many significant insights are revealed by our study: (i) bubble motion causes large temporal and
spatial gradients of shear stress at the “endothelial cell” (EC) surface lining the blood vessel wall as the bubble
approaches the cell, moves over it, and passes it by; (ii) rapid reversals occur in the sign of the shear stress
(+ - — — +) imparted to the cell surface during bubble motion; (iii) large shear stress gradients together
with sign reversals are ascribable to the development of a recirculation vortex at the rear of the bubble; (iv)
computed magnitudes of shear stress gradients coupled with their sign reversals may correspond to levels that
cause injury to the cell by membrane disruption through impulsive compression and stretching; and (v) for the

vessel sizes and flow rates investigated, gravitational effects are negligible.
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I. INTRODUCTION

Air embolism in the cardiopulmonary system has been a
subject of interest to clinicians and researchers for many
years because of the severe hemodynamic and gas exchange
abnormalities that result [1]. Many studies of air embolism
have been done in the context of decompression illness,
which is a prominent problem for divers but may affect avia-
tors and astronauts as well. The intravascular gas emboli may
deposit into organs, such as the heart or the brain, and as a
result, cause permanent injury. Recent study has shown that
the distribution of gaseous emboli in the pulmonary blood
vessels is influenced not only by their differential density
from blood (buoyancy) but also by the flow dynamics within
the pulmonary vascular tree [2]. The simplest possible rep-
resentation of an intravascular gas embolus is the pressure-
driven motion of a bloodlike fluid in a circular vessel con-
taining a bubble of comparable diameter. For the past several
years, we have been experimentally and numerically investi-
gating bubble motion in liquid filled cylinders in the context
of pulmonary gas embolism ([3-8]). When the size of the
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bubble is comparable to the vessel diameter, which is often
the case in gas embolism, the confining walls affect the
bubble shape and in turn its mobility. Calculating the dynam-
ics of such a bubble requires numerical solutions of the
Navier-Stokes equations governing the motion of fluid in
both the gas and bulk fluid (blood) phases that are typically
characterized by large jumps in fluid properties, namely, den-
sity and viscosity, in addition to the presence of high surface
tension forces. This problem is further complicated by the
presence of fluid inertia in the bulk phase and the fact that
blood is a rheologically complex fluid [9].

A number of experimental and modeling studies of prob-
lems somewhat related to the topic under discussion have
been reported in the literature (see [10-29]). To the best of
our knowledge, at present, there are no studies available that
have considered the biofluid mechanics of a finite-sized gas
bubble moving through a rheologically complex fluid for a
wide range of Reynolds numbers that are encountered in
typical arterial flows. In this paper, we present a rigorous
mathematical formulation and numerical solutions for the
axisymmetric motion of a finite-sized occluding gas bubble
moving in a blood vessel.

There are a number of numerical methods that are avail-
able for investigating the problem under consideration (see
[20,27,30-42]). After considerable numerical experimenta-
tion, we have chosen to employ an immersed boundary
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FIG. 1. Schematic of a nearly occluding bubble in vertical and
horizontal vessel configurations.

reconstruction of the front and a “density-weighted” surface
tension force distribution scheme [7].

Our study is particularly focused on evaluating the bubble
shape, mobility, and importantly, the wall shear stress and the
residence time for the bubble in the vicinity of an “endothe-
lial cell” (EC) lining the vessel interior. For evaluating the
wall shear stress, a typical point on the cell surface is con-
sidered. For the residence time, the time duration for bubble
transit across a typical endothelial cell length is considered.

The paper is organized as follows. First, a mathematical
description of the problem is provided with necessary bound-
ary and initial conditions. Then the numerical method em-
ployed to solve the problem is presented. It is then followed
by results and discussion. The final section deals with the
major conclusions of the present study.

II. MATHEMATICAL FORMULATION
A. Governing equations

We consider the axisymmetric motion of a gas bubble in a
vessel of circular cross section of radius R (diameter d) as
shown in Fig. 1. The vessel configuration may be vertical or
horizontal. The gas bubble may be spherical or elongated.
For the nearly spherical occluding bubble, the aspect ratio A
(radius of the bubble to the radius of the vessel) could be
near unity (A<<1). For an elongated occluding bubble, the
aspect ratio N may be equal to or larger than unity (\=1)
and in this case at introduction, a thin annular film between
the bubble and the vessel wall is taken to surround the
bubble. It should be noted that for an elongated occluding
bubble, the equivalent spherical bubble will have a radius
equal to or exceeding that of the vessel. The instantaneous
shape of the bubble will depend on the prevailing flow con-
ditions.

The gas is assumed incompressible with density p, and
viscosity u,. The bulk fluid is also incompressible and mod-
eled as a shear-thinning Casson fluid of viscosity w; and
density p;,. Note that y; is a spatially varying parameter and
depends on the local shear rate.

The equations of motion for the two-phase flow (bubble
+blood) may be expressed as

V-u=0, (1)
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Ju T
pE+Vu~u =-Vp+ V- u(Vu+V'u)

+ j aICnfg(x -Xxpds+pg. (2
S(1)

Here, u=(v,,v,) is the fluid velocity, v,, v, are the veloc-
ity components along the radial and axial directions, p is
pressure, p and w are the density and viscosity of the me-
dium (defined below), g is gravitational acceleration (=0 for
a horizontal vessel), s is an arc length measure on the inter-
face, IC is the curvature of the interface, o is the constant
surface tension coefficient, and S(7), ng, and Xs denote the
instantaneous location of the interface, the unit normal vector
on the interface (pointing into the bulk fluid), and the posi-

tion vector on the interface. 3(x—xf) is the 2D axisymmetric
delta function which is nonzero only when x=x;. The density
and viscosity of the medium are

p(r.z,1) = p/H(r,z,1) + p[1 = H(r,z,1)], (3)

plr,z,t) = wH(r,z,t) + [ 1 = H(r,z,0)]. 4)

Here, t is time, and H(r,z,t) is a Heaviside function such
that

" 1 (r,z,1) in the bulk s
(rzn=1, (r.z.7) in the bubble. )
The bulk fluid is modeled as a two-layer fluid consisting
of a cylindrical core of concentrated red blood cell (RBC)
suspension surrounded by a less viscous, thin cell-free layer.
The cell-free layer is modeled as a Newtonian fluid of con-
stant Viscosity pjayer=/Bu, [43]. Here, w, is the plasma vis-
cosity (=1.2 cP). The factor B depends on the thickness of
the cell-free layer & and the core hematocrit H.. The concen-
trated suspension of RBCs is modeled as a shear-thinning
Casson fluid. Thus, we let

Me> 0sr<(1-90R

(1-8)R<r<R, ©

/.L[(V,Z,[) = {

lu’layer >

where o represents the nondimensional thickness of the cell-
free layer normalized with respect to the vessel radius R. The
Casson viscosity u, is given by (see [44])

2
— Ty
e = {\",uod \/B“/-'] , (7)

where 7y, @, and || are the yield stress, the asymptotic
Newtonian viscosity, and the shear rate, respectively. For
blood, u. and 7, are functions of the discharge hematocrit
(Hp), the percentage of blood volume made up by red blood
cells, and the vessel size. The difficulty in using the Casson
model in a numerical scheme lies in its discontinuous char-
acter in the limit of zero shear rate (|7|—0). This disconti-
nuity can be overcome by using a regularization technique
given in [45]. Following [45], the Casson equation (7) can be
recast as
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TABLE 1. Calculated values of &, B, and H. for various
HD’S.

Hp d (m) o B He Miayer= B, (cP)
0.335 40 0.26 1.3 0.44 1.55
0.335 100 0.1 1.3 0.35 1.55
0.335 2000 0.004 1 0.335 1.2

0.4 40 0.2 1.36 0.5 1.63

0.4 100 0.09 1.39 0.42 1.67

0.4 2000 0.004 1 0.4 1.2

0.45 40 0.2 1.4 0.55 1.69

0.45 100 0.08 1.45 0.47 1.74

0.45 2000 0.004 1 0.45 1.2

2
M= [\'@+ \/%(1 —e_‘m—yl)] ; (8)

where m is the Casson viscosity regularization exponent and
is typically taken to be ~100. At spatial locations where |7
is identically equal to zero, a cutoff value for viscosity w,
=25 cP is chosen on the basis of numerical experimentations
carried out as part of the present study. These numerical ex-
perimentations included setting w.=20 and u.=50 cP on the
bubble dynamics. The shear rate involves the second invari-
ant of the rate of deformation tensor and is given by

Y =2 tr(D?), 9)
Vu+ Vu’
- (10

In Eq. (9), tr(D?) is the second invariant of the rate of defor-
mation tensor D.
In Eq. (8), u.. and 7, as functions of core hematocrit H

are given in [46] as
7'1/2 ( 1 )Cl/z
c=C —-1. (11
S ()

Here, C;, C, for human blood are 2.0 and 0.3315. The evalu-
ations of the above equations require H, 6, and B. In regard
to the hematocrit, the discharge hematocrit Hp, is usually a
known quantity. For >0, the core hematocrit H., which is
based upon the core volume, is larger than Hp,. For a given
vessel size, the relationships between Hp, H, 6, and B are
nonlinear. For vessels of diameter in the range 20 um=<d
<300 wm, Sharan and Popel [43] have described methods
that are based on nonlinear coupled differential equations
supplemented by experimental data. These methods establish
relationships between Hp, H, &, and B for known values of
d and Hp. We have solved these equations for d=40 um
(small arteriole) and 100 wm (large arteriole) for H,=0.45,
0.4, and 0.335, and have documented H., &, and B. The
details of the Sharan and Popel model are not included here
for the sake of brevity. In this study we have also examined
a vessel size d=2000 wm (small artery). At such high radius,
60— 0 and H-~ Hp,. Table I provides these quantities used in

M
(1-Hp

Mhoc
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2 10 04 | 05 1.63

20 3 100 | 045 | 047 | 1.74
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FIG. 2. Core viscosity variation as a function of shear rate for
three different discharge hematocrits and vessel sizes. Curve num-
bering starts from 1 at the top to 9 at the bottom. 1 cP=10"2 P
=10"2 dyns/cm?>.

our simulations. The following steps are needed for the nu-
merical study:

(1) Determination of core viscosity.

(2) Determination of fully developed velocity profile at
the inlet of the vessel using a two-layer model (no bubble).

B. Core viscosity determination

At a given temperature, the viscosity of blood depends on
the viscosity of plasma and its protein content, the hemat-
ocrit, the shear rate, and the narrowness of the vessel in
which it is flowing. The dependence on the latter is the
Fahraeus-Lindqvist effect. The dependence on the prevailing
shear rate and the Fahraeus-Lindqvist effect each classify
blood as a non-Newtonian fluid.

With inputs from Table I and Eq. (8), we can discern the
variation of core viscosity, . as a function of shear rate for
various values of Hp, and vessel sizes. These variations are
plotted in Fig. 2. The values for H are also displayed. For
given Hp and 7y values, u. is the highest for the smallest
vessel. For given vy and vessel size values, u, is the highest
for the largest Hp. For a given H, and vessel size, the core
viscosity varies nonlinearly with vy and sharply increases in
the region 0 <y<<50. For each Hp, u,. asymptotes to a con-
stant value at high shear rates. From Fig. 3, the apparent
viscosity i, as defined by Eq. (12) (see [47]) is noted to
decrease with vessel diameter for large values of 7y (y
>200 s7!) and every Hj,.

M,
Mapp = /*l’layer[1 -(1- 5)4<1 - _II;E>

c

(12)

C. Fully developed flow of a Casson fluid without the gas
bubble: Two-layer model

By solving the formulation for a fully developed flow in a
vessel of a given size, we establish the pressure drop and the
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FIG. 3. Apparent viscosity variation as a function of vessel di-
ameter for three Hp’s.

velocity profile. The maximum flow velocity is the centerline
velocity in the absence of a bubble, U,,,v=U cnerline- LhiS
value is known from experiments for normal human blood
(hematocrit ~0.4) for the three vessel sizes studied here: a
40-um-diameter small arteriole, 100-um-diameter large ar-
teriole, and 2000- um-diameter small artery. The correspond-
ing values of U,,, are listed in Table II. To estimate the
corresponding pressure drop (dP/dz) and evaluate the inlet
velocity profile, we solve a two-fluid model given by

——(r7, =5 (13)

where 7=u,(dv./dr), v, is the axial component (with U,
= v_|,—0), p is given by Eq. (6), and y=dv_/dr. This is sub-
ject to v,=0 at r=R (no slip), u.(dv./dr)= pyeldv,/dr) at
r=(1-38)R (continuity of shear stress across the core and
cell-free layer interface), and dv./dr=0 at r=0 (symmetry).
We have numerically solved the above equation using finite
differences and obtained the velocity profile that corresponds
to the appropriate U,,,.. The values of the pressure gradients
(dP/dz) for various vessel sizes and Hp’s are listed in Table
III. This is the starting point for the problem. With a fully
developed flow under a given pressure gradient, we will in-
troduce the bubble and study the subsequent dynamics.

D. Bubble motion in the vessel

For this problem, the governing equations for the flow are
given by Egs. (1) and (2). The boundary and initial condi-

TABLE II. Centerline velocities for various vessel sizes (from

[48]).

d (pm) Upnax (cm/s)
40 1.75
(small arteriole)

100 7.0
(large ateriole)

2000 35.0

(small artery)
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TABLE III. Pressure gradient values for various Hp’s and vessel
sizes.

d (um) Hj Z—j (dyn/cm?) Uppax (cms™h)
40 0.335 42500 1.75

40 0.4 50000 1.75

40 0.45 56500 1.75
100 0.335 31200 7.0

100 0.4 35000 7.0

100 0.45 41000 7.0
2000 0.335 427 35.0
2000 0.4 534 35.0
2000 0.45 645 35.0

tions for the problem in the presence of the bubble are as
follows.

Inlet boundary, z=0. At the inlet, the fully developed two-
fluid model axisymmetric Casson flow velocity profile and
dP/dz are determined as above and are prescribed for the
bubble problem.

Outlet boundary, z=L. Since the flow occurs in a long
vessel, for computational purposes it is important to establish
a geometry with a prescribed location for the outlet bound-
ary. Here, the outlet boundary is set at z=L=6d. The ratio-
nale for 64 is explained later under Sec. V A. An outflow
boundary condition at z=L is prescribed as follows:

@(r,L,z) =0. (14)
0z

Reflective boundary, r=0. A reflective boundary condition
is used at the axis of symmetry, r=0.

v,(0,2,)=0, 0<z<L,
17
220,20=0, 0<z<L. (15)
ar
Wall no-slip boundary, r=R.
u(R,z,1) =0. (16)

E. Initial conditions

At =0, the flow is described by a fully developed veloc-
ity profile (v.(r)) obtained by solving Eq. (13). Thus

u(r,z,t=0) — v.(r)]=0- (17)

F. Initial bubble shape and location

For A =1, the initial shape of the bubble is such that there
is a thin annular fluid film between the bubble and the wall.
The film thickness is set equal to 0.1R. The initial shape may
be either spherical (A<<1) or a hemispherical capped cylin-
drical slug (\=1) (for example, see Fig. 1). The subsequent
shapes for >0 are determined by the prevailing physics.
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TABLE IV. Reynolds number based on apparent viscosity fapp,
vessel diameter d, and U, for various Hp’s.

Hp d (um) Reypp
0.335 40 0.36
0.335 100 29
0.335 2000 230.2
0.4 40 0.32
0.4 100 2.5
0.4 2000 183.2
0.45 40 0.29
0.45 100 2.15
0.45 2000 151.5

In physiological terms, our wall boundary may be taken to
denote the endothelial surface layer (ESL) [49]. The bubble
is positioned a diameter away from the inlet (bottom) bound-
ary at the start of computations.

III. NONDIMENSIONALIZATION OF GOVERNING
EQUATIONS

The governing equations are nondimensionalized using
the following scheme: p=p;p*, u= ™, s=ds*, r=dr*, z
=dz*, u=Upu*, t=d/ Uy t*, p=pU-. /d, y=Upy!dy*,
K=K*/d, and 3=(1 /d3)3*. Here, the superscript * refers to
nondimensional quantities, u,. is the reference viscosity, and
U ax 1s the maximum inlet flow velocity. Here, . is taken
to be an average blood viscosity (assumed to be equal to
3.5 cP). With these reference values, for vessel sizes of
40-um-diameter small arteriole, 100-um-diameter large ar-
teriole, and 2000-um-diameter small artery, the Reynolds
numbers defined by Re=p,dU, ../t are 0.2, 2, and 200,
respectively. We compare these Reynolds number values
with those derived on the basis of apparent viscosity wy,
given by Eq. (12). The latter Reynolds numbers are defined
by Reypp=p1Umaxd/ thapp- This comparison would enable us to
discuss the results obtained in terms of Re’s based on refer-
ence values and would avoid constant reference to particular
parameters. The values of Re,, for three different H)’s and
three vessel sizes are shown in Table IV. It is observed that
the apparent Reynolds numbers are in the range of 0.2, 2,
and 200. Thus, we will discuss the results of this paper in
terms of these generic values.

For a vertical vessel configuration, Egs. (1) and (2) be-
come (after dropping the superscript *)

V.u=0, (18)

ou 1 .
P +Vu~u——Vp+ReV - w(Vu+ V')

1
+—

« 1
Kn —-Xp)ds + —p(—e,).
We J g O X)ds Ffzp( )

(19)

In Eq. (19), e, is the unit vector along the axial direction.
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The bulk viscosity expression given by Egs. (6) and (8) in
nondimensional form becomes

. Bi — |’

|:'“_+ _l(l_e—\my):| ,0sr=<s(1-912
Meref |7|

Mlayer’ (1-812<r=<0.5.

Moref

(20)

We note that there are four nondimensional parameters
involved: the Reynolds number, Re, Weber number, We,
Froude number, Fr, and Bingham number, Bi. The latter
three are defined by

2
Bi= _T)d_ We = Lmaxd Fr= h
/’Lrermax g \“"gd

Certain other parameters of interest may be obtained by a
combination of the above numbers. For example, for Re
<1, we consider the capillary number, Ca=uU,, /0o
=We/Re which is a ratio of viscous to surface tension
forces. Three additional parameters that govern the problem
are p,/pj, Mol py, and \.

IV. NUMERICAL METHOD

Equations (1) and (2) are solved subject to boundary con-
ditions by Egs. (13)—(16) and initial condition equation (17).
The density and viscosity variations in Egs. (1) and (2) are
given by Egs. (3), (4), (6), and (8).

The present study is based on a front-tracking method
coupled with a level contour reconstruction procedure [6,7].
The key steps in the numerical algorithm are listed below.

(1) Given the interface position, calculate the surface ten-
sion forces and distribute them to the fixed Eulerian grid
using a “density-weighted” distribution procedure.

(2) Smooth the jump in fluid properties across the inter-
face using a smoothed-delta function.

(3) Solve the governing equations on the fixed Eulerian
mesh using a projection method to obtain the divergence-free
velocity and the pressure.

(4) Update the position of the interface by advecting in a
Lagrangian fashion using the velocity field obtained in step
(3).

(5) Reconstruct the interface using a level-contour recon-
struction procedure if the bubble volume is less than 0.5% of
the initial volume or after every few hundred time steps.

(6) Repeat steps (1)—(5) until steady state is reached or the
bubble reaches the outlet.

These steps are briefly explained in the following.

A. Surface tension calculation

The surface tension force, f;, acting on a small segment
of the interface surface is given by (see [7])

B
fs[=J Ulcnfds=(7(tA—tB)—erUSAB, (21)
A

where t is the tangent vector on the interface, e, is the unit
radial vector, A,B are the end points of the interface seg-
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ment, and s,p is the length of the A-B segment. The calcu-
lated surface tension force on the marker points is then trans-
ferred to the fixed Eulerian cells using a numerical

approximation of the & function appearing in Eq. (2). How-
ever, with such a distribution, interfacial numerical instabili-
ties arise for flows involving high surface tension forces and
large density and viscosity ratios. To avoid these instabilities,
following [50], the surface tension force is distributed in a
density-weighted manner as follows:

Z pi,jfsteDi,j(X - Xm)
e

(22)

Foip= ,
E pi,jDi,j(X ~X,,)
e

where x=(iAr,jAz), X,,=(r,,,2,,) is the midpoint of the in-
terfacial segment e, p; ; is the density at the given Eulerian
grid point (i,j), and D;; is

Srol Ar = )8z, Az - j)

D, (x— =
" (x=x,) 2arArAz

(23)

The one-dimensional delta function is numerically approxi-
mated as follows (see [51]):

8(d), | <1
dd)=\12-602-d), 1<l|d<2 (24)
0, ld| =2,

and &,(d)=(3-2|d|+V1+4|d|-4d%)/8. Here, d denotes the

distance from the origin of the source (the front position). In
an earlier paper [7], the equation for 3(3) has a typographical

error for the range 1<|d|<2. The factor 2—|d| has to be
properly introduced there.
From Eq. (24), it is evident that the support of the func-

tion 8(d) is two cell widths on either side of the interface.
Refining the grid by a factor of 2, therefore, halves the width

of the 3(&?) function.

B. Smoothing of fluid properties

In the bubble dynamics problem, the ratios of the proper-
ties of the two fluids across the interface can be very large,
for example, of the order of 1000 for density, and 100 for
viscosity. Such sharp jumps complicate the simulation due to
instabilities. To alleviate this, the discontinuities are
smoothed out across a finite thickness proportional to the
mesh size. This is achieved by a smoothed H(r,z,t) whose
value varies from 1 in the continuous (bulk) phase to 0 in the
dispersed phase. A smoothed solution for H(r,z,t) is found
by solving a Poisson equation [52] as follows:

V- -VH(r,z,t)=V - f nfﬁ(x -X,)dS. (25)

S(1)

The sharp & distribution in Eq. (25) is written as a product of
two one-dimensional delta functions along the radial and
axial directions. Equation (25) is efficiently solved for the
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whole domain with appropriate boundary conditions using a
multigrid method based on the red-black Gauss-Siedel
(RBGS) smoother [53]. In our problem, a symmetry bound-
ary condition dH/dr=0 is used at r=0 and a Dirichlet
boundary condition with H=1 is used on all other bound-
aries. The density and viscosity are updated using

p(r.z,t) = p/H(r,z,t) + p[1 = H(r,z,1)], (26)

Iu‘(r»Z,t) = MlH(r’Z’t) + lu'g[] - H(V,Z,t)]. (27)

C. Flow solver: Projection method

The conservation equations are discretized with a second-
order finite difference based variable density projection
method [34]. The velocity, density, and viscosity are all lo-
cated at cell centers. The lagged pressure p"~!'? is located at
cell corners with the superscript n denoting the time level.
The time stepping procedure is based on the second-order
Crank-Nicholson method.

Briefly, an intermediate velocity field is obtained using a
semi-implicit viscous solves. The equation for the intermedi-
ate velocity u* is given by

pn+(1/2) u’—u’ =—[(u- V)u]n+(l/2) —G 12
At r

(D*+D”
+

> )"‘FZ;-(I/Z)"'PM(I/z)g,

(28)

where G,, D(u)=V-u"(Vu+V'u), and F,, represent the
pressure gradient operator, the diffusion operator, and the
discretized surface tension forces [see Eq. (22)], respectively.
A second-order predictor-corrector method based on the un-
split Godunov method [54] is used to evaluate
[(u-V)u]™*("? and a standard second-order central finite
difference is used for D(u). For D(u), the spatial distribution
of viscosity is computed explicitly using the second invariant
of the strain rate tensor evaluated at the nth time step. Thus,
u=pu" in Eq. (28) refers to the viscosity at the nth time step.
Such an evaluation does not impose additional stability cri-
terion as noted in [55]. The resulting equations for the veloc-
ity components of u* [Eq. (28)] are solved by a multigrid
method based on the red-black Gauss-Siedel (RBGS)
smoother [53]. A projection method is invoked on u* to ob-
tain the divergence-free velocity u"*!. The projection step is
given by the following equations:

un+l —u" _73(“* _un>
At At )’

u*—u”)
At )

(29)

1
1) _ - —(1/2)
pn+(1/2) Gp”+ - pn+(l/2) Gpn + (- P)(

where P represents the discretization of the projection opera-
tor. The details of the steps involved in discretization of in-
dividual terms in Egs. (28) and (29) for an axisymmetric case
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and the corresponding time step restrictions for numerical
stability are given in [34].

D. Interface advection

With the updated Eulerian velocity field, the front or
marker points are advected in a Lagrangian fashion as fol-
lows:

u " At
xf+(”2)=xf+V”?, (30)

At
X;H =X;+(l/2) +Vn+1?’ (31)

where V is bilinearly interpolated from the fluid velocities,
and x; denotes the position of the front point. Adding Egs.
(30) and (31), we get

n+l +V"
X =x 4 (T At. (32)

Thus, Eq. (32) guarantees a second-order accurate scheme
for the advection equation of marker points.

E. Interface reconstruction and bubble volume conservation

In this study, both redistribution of the front points and
conservation of the bubble volume are simultaneously en-
forced using a level contour reconstruction procedure
[7,56,57]. With a significantly deforming interface, a new
distribution of front points is needed. The H=0.5 contour
obtained by solving Eq. (25) represents the location of the
interface and is reconstructed in each cell using a simple
linear interpolation procedure (a point-slope calculation).
The intersection points of these linear contour segments with
the background Eulerian cells now form the new representa-
tion of the front. Also, the volume fractions of the bubble and
the bulk fluids in each of the cells intersected by the contour
segments can be directly computed, and the total volume of
the bubble estimated. However, in some simulations, H
=0.5 contour may not always result in bubble volume con-
servation. For such cases, an optimum contour value, Hopt,
different from 0.5 is found through iterations such that a
desired level of accuracy for the total bubble volume conser-
vation (typically within 0.5% of the initial volume of the
bubble) is achieved. The interface reconstruction is done ev-
ery few hundred time steps or more depending on the cir-
cumstance or when the volume loss of the bubble exceeds
0.5% of the original volume. This serves as the criterion for
interface reconstruction.

V. RESULTS AND DISCUSSION
A. Domain and grid sizes

Our problem entails solving for bubble motion in a long
cylindrical vessel. For purposes of numerical computation,
there is a need to define inlet and outlet numerical boundary
locations which reflect the physics. Here, we estimate the
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FIG. 4. Bubble velocity for Re=200 and (a) A=0.9, and (b) A
=1.3, as a function of time for three aspect ratios (R:L).

optimal sizes of the numerical domain and of the grid for the
computations.

Simulations are carried out for Re=200, A=0.9,1.3, and
in a vertical configuration. Results are developed for three
different domain sizes (R:L): 1:8, 1:12, and 1:16. We note
that in order to assess an optimal size, it is enough to ascer-
tain the size necessary for obtaining steady motion of both a
bubble in a vertical vessel at the highest Re (buoyancy-
assisted motion).

In Fig. 4, for identical conditions, the nondimensional ve-
locity of the center of mass of the bubble, vZ:vh/ Upaxo 18
plotted as a function of nondimensional time 7*, for Re
=200, A=0.9 [Fig. 4(a)], and N\=1.3 [Fig. 4(b)]. For A=0.9,
it is noted that for all three sizes chosen, the bubble velocity
asymptotes to a steady state value of ~0.62 at about t*
~2.5. For A=1.3, the bubble velocity asymptotes to a steady
value of ~0.6 at about *~3.

In Fig. 5, the steady state shapes of the bubbles corre-
sponding to the cases of Fig. 4 are plotted at t*=2.6 for A
=0.9 [Fig. 5(a)] and r*=3.1 for A=1.3 [Fig. 5(b)]. The ver-
tical boundaries of the bounding boxes denote actual wall
locations. The steady state shapes are noted to be identical.
On the basis of these figures, we choose R:L=1:12
(d:L=1:6) for all of our subsequent calculations. With a
smaller R: L, the bubble would exit the domain before attain-
ing the steady state, while a larger R:L is not computation-
ally efficient.

The effect of grid size on the solutions are next investi-
gated. Uniform grid spacings along both radial and axial di-
rections are used. Our intention is to determine the optimal
grid size to accurately evaluate the near-wall events. Two
grid sizes (N, X N,), where N, and N, are the number of grid
points along the radial and axial directions, are considered: a
64 X768 grid and a twice finer 128 X 1536 grid. As noted
earlier, for the 128 X 1536 grid, the interface thickness is
halved compared to the 64 X768 grid. With each grid size,
simulations are done for two cases, Re=0.2, A=1.0 and Re
=200, A=1.3. The steady state bubble shapes for these cases
are shown in Fig. 6 for both grid sizes. For both grid sizes,

036303-7



MUKUNDAKRISHNAN, AYYASWAMY, AND ECKMANN

R:L=1:8
— — —R:L=1:12
— = R:L=1:16

(a)

Z = Zfront
o

FIG. 5. Steady state bubble shapes for Re=200 and (a) A=0.9,
and (b) A=1.3, for three aspect ratios. zg,, denotes the axial loca-
tion of the bubble’s front stagnation point.

the steady state shapes and the annular fluid film thicknesses
are the same. The corresponding streamlines in and around
the bubble are also identical (not displayed here). Thus, a
64 X 768 grid is noted to be sufficiently accurate.

B. Validation of the numerical scheme

Results appropriate for a bubble motion in Casson fluid
through a circular vessel are not available at the present time
to enable a straightforward validation. Predictions for the
steady state dynamics are compared with the experimental
results of Ho and Leal [18], and the numerical evaluations of
Martinez and Udell [17]. Ho and Leal [18] have presented
results for the drop velocity, drop shape, pressure drop, and
streamlines for the creeping motion of neutrally buoyant
Newtonian drops (p,/p;=1) through a circular vessel. The

- = G4 x 768 0
——— 128 x 1536

Z = Zfront

FIG. 6. Steady state bubble shapes for (a) Re=0.2, A=1.0, and
(b) Re=200, A=1.3 with R:L=1:12 and two grid sizes 64 X 768,
128 X 1536.
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FIG. 7. Comparison of the present numerical solution (top) with
the boundary element solution [Fig. 3(b) in [17]] (bottom).

drop diameter is comparable to the diameter of the vessel.
For the case where w,/u;=0.19, Ca=0.1, and Re=0.06, the
dimensionless steady state velocity of the drop (based on
mean inlet velocity) is measured to be ~1.39 and this com-
pares with our numerical prediction of 1.39. Martinez and
Udell [17] have employed a boundary element technique for
solving a similar problem with Re set to zero, and predict
this velocity to be 1.45. Comparisons of our flow field pre-
dictions with those of Martinez and Udell [17] are displayed
in Fig. 7 and are noted to be qualitatively very similar.

Next, we compare our results for the rise of a Newtonian
fluid drop in a shear thinning fluid medium with the numeri-
cal results of Ohta et al. [16] for identical conditions and an
identical rheological model. They have used a volume of
fluid method. The shear thinning fluid is modeled by a four
parameter Carreau-Yasuda fluid (sodium acrylate polymer—
SAP). The dimensional values of parameters for the case are
p/=1.0014 gm/cm?, p,=0.971 gm/cm?, and initial drop di-
ameter equal to 0.914 cm. Following [16], the variation of
the bulk liquid viscosity is given below.

Mo
= , fi <A, 33
17 T g w70 or 59
= fisaps |V = A, (34)

where a, n, 7" are model parameters, 'y| is the shear rate as
given by Eq. (9), and p and figap.. are the asymptotic vis-
cosities at zero and infinite shear rates, respectively. Also,
A=100 s7!, is the experimentally obtained shear rate at the
intersecting point of the Carreau-Yasuda model and figspe-
The values of various other parameters are given in Table V.

The steady state Reynolds number predicted by our
scheme is 37 and this compares with 35 given by Ohta et al.

TABLE V. Values for parameters given in Egs. (33) and (34) for
the highly shear-thinning SAP liquid.

Ho (Pass) 7 (Pa) n a Asppe AT

0.026 0.018 0.4 4.0 0.0013 100
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TABLE VI. Estimated values of nondimensional parameters.
Values of pe=3.5 cP, prr=1.0 gm/cm?, and o=50 dyn/cm are
assumed.

d Umax

(pem) (cms™) Re Ca We Fr

40 1.75 02 1.225X1073 245x10* 0.88
100 7.0 2 49%x1073 98X1073 224
2000 35.0 200  2.45%1072 4.9 2.5

[16]. These experimental and numerical validations of our
procedure lend credibility to our results.

C. Detailed study of the motion of occluding bubbles
under various conditions

In this section, we describe the motion of an occluding
bubble in three different vessel sizes. The vessel sizes are
representative of a small artery (d=0.2 cm), a large arteriole
(d=100 um), and a small arteriole (d=40 wm) in a normal
human. The values of various parameters used in the simu-
lations are given in Table VI. The simulations are done for
both horizontal and vertical vessels. As stated earlier, for
arteriolar vessels of 40 and 100 micron sizes, a distinct cell-
free layer is considered that occurs due to a net lateral mi-
gration of the particles away from the vessel wall (see [47]).
In the calculations, o is taken as 3 dyn/cm (Ca=2X 107?)
for Re=0.2, and 10 dyn/cm for Re=2 (Ca=2.45X 107?) al-
though the air-blood surface tension coefficient may be
around =50 dyn/cm. The reduced value chosen for o is
necessitated by the fact that for low Re and very high o
(= low Ca), spurious parasitic currents appear near the in-
terface. Such spurious currents have been reported in other
studies for similar circumstances [52]. An artificial reduction
in the value of o is not required at higher values of Re. The
impact of the choices for o is discussed elsewhere in the text.

A short duration after bubble release in the fully devel-
oped flow, the bubble velocity and shape attain steady states.
During its motion, the bubble experiences the following: (a)
inertia force due to applied pressure gradient, (b) viscous and
wall forces, (c) surface tension forces, and (d) gravity.

In Fig. 8, the steady state bubble shapes at Re=0.2, 2, and
200 for A=0.9, 1, and 1.05 are displayed. The hematocrit
value Hp, is set equal to 0.45. In the plots, the front stagna-
tion point of the steadily moving bubble is taken as the origin
and a scale length is identified on the ordinate. This is done
to display the extent of deformation. From Table VI, it is
evident that at Re=0.2 and 2, capillary effects dominate both
inertial and viscous effects (Ca, We<<1), and for A=0.9 the
bubbles remain nearly spherical. At these Re’s, for A=1,
bubbles nearly occlude the vessels. The shapes predicted for
Re=0.2 are qualitatively consistent with both the experimen-
tal observations of Ho and Leal [18] and the numerical re-
sults of Martinez and Udell [17]. For Re=200, inertial forces
dominate capillary and viscous forces (We~35 and Ca<<1).
For A=0.9, the interface deformation due to the inertia of the
bulk fluid is most pronounced at the trailing end resulting in
a flatter interface. The bubble is prolate spheroidal at the
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FIG. 8. Plot of steady state bubble shapes for Re=0.2, 2, and
200 and A=0.9, 1.0, and 1.05.

front. For A= 1, the bubble deforms appreciably in the axial
direction because of high interface stretching due to fluid
inertia and increased wall effects.

To quantitatively assess the extent of deformation, the fol-
lowing deformation parameters are introduced after the
bubble attains its steady shape: the axial length of the bubble,
{=L,;a/2R, the maximum radial extent of the bubble &
=L /R, and the ratio n={/§. These are plotted in Figs.
9(a)-9(c), respectively.

Consider the cases for Re=0.2 and 2. From Fig. 9(a), &
linearly increases with N up to 0.95. In the range 0.9<A\
=(.95, the bubble is nearly spherical due to the dominance
of surface tension forces (see Table VI). The weak deviation
from sphericity is due to the applied pressure gradient. This
deviation is lesser for Re=2 compared to that for 0.2 because
of the increased role of the wall effect as Re increases. The
wall effect is such as to resist increased radial deformation

s L15} _‘_.—“‘ o
S -
” e e
0.9 - -
0.9 0.95 1 1.05
A

FIG. 9. Calculated bubble deformation factors for different Re’s
as a function of \.
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FIG. 10. Minimum film thickness normalized with Lgg;, as a
function of N\ for various Re’s.

that is favored by the applied pressure gradient. Beyond A
=0.95, there is significant competition between wall-induced
forces and capillary effects. The rate of change of & de-
creases with increasing A up to A=1. For A>1, the defor-
mation is negligible and & asymptotes to around 0.98. We
now assess the loss of accuracy incurred by employing o
=3 dyn/cm and 10 dyn/cm for Re=0.2 and 2, respectively.
For Re=0.2, the asymptotic value of ¢ may be estimated
following Bretherton [58]. Bretherton [58] has studied the
motion of a semi-infinite bubble in a Newtonian pipe flow
and has demonstrated that the film thickness is proportional
to Ca?>. For fixed p,r and U, the film thickness is there-
fore «o™?3 and this leads to & to be =~0.997 with o
=50 dyn/cm. Although we are dealing with a finite-sized
bubble, such an estimate is useful. For Re=2 and low Ca,
based on the study of Heil [59] and Giavedoni and Saita [60]
for a semi-infinite bubble at finite Reynolds numbers, &
~(0.993 and this compares with 0.98 obtained here.

The variation of { as a function of A\ is displayed in Fig.
9(b). For \ up to 0.95, an increase in { is commensurate with
the increase of & because of near sphericity of the bubbles in
this regime. For 0.95<\ <1, the rate of increase of { is
higher due to increased wall effects. It may be noted that the
bubble deformation is unconstrained in the axial direction.
For A=1, the deformation is essentially axial. If we now
approximate the shape of the bubble by a hemispherical
capped cylinder (see Fig. 8), based on bubble volume con-
servation, it may be shown that £\ in this regime. From
Fig. 9(c), it is evident that for 0.9 =<\ <0.95, 7 is near unity
and the bubble is essentially spherical.

Next, we consider Re=200 in Figs. 9(a)-9(c). For X\
=0.9, there is considerable bulging at the rear of the drop due
to fluid inertia (We ~35) causing £ to be higher than \ [see
Figs. 9(a) and 9(c)]. With increasing \ up to 0.96,  increases
at a higher rate than & This is attributable to the combined
effects of the wall and fluid inertia. Beyond A=0.96, the
radial deformation is negligible and extension is purely axial
with a A* dependence [see Fig. 9(b)].

In Fig. 10, the dimensionless film thickness Jpc
=(R—Lyygiu)/ Lgsy 1s plotted as a function of N for various
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(a):Hp = 0.335

= = Re=2 + == Re =200
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FIG. 11. Bubble steady state velocities for different Re’s and
Hp’s as a function of \. (a) Hp=0.335, (b) Hp=0.4, and (c) Hp
=0.45. Curve legends for (b) and (c) are the same as (a).

Re’s. Here, Lgg; is the thickness of an endothelial surface
layer (ESL) and is assumed to be ~0.5 um (see [49]). The
ESL is an extracellular layer of cell membrane-bound sub-
stances that is actively involved in many functions, such as
the control and regulation of vascular tone, fluid and solute
exchange, haemostasis, and coagulation and inflammatory
responses [49]. The ESL restricts the flow of plasma and can
exclude red blood cells and some macromolecular solutes.
Hence, Lgg; is a scale along the crosswise direction (perpen-
dicular to the flow) and is useful for estimating the proximity
of the bubble surface to the cell layer. The thickness Jgc is
therefore, a measure of the proximity of the bubble interface
to the endothelial cell (EC) surface—an important parameter
in the study of gas embolism. It is known that a closeness
between the gas bubble surface and the EC surface is respon-
sible for the initiation of cellular responses such as intracel-
lular calcium (Ca?*) signaling. In the problem studied, Sgc is
smallest for Re=0.2 and is higher for Re=2 and 200. In fact,
for Re=0.2 and 2, and N> 1, S~ O(1), and the minimum
film thickness (R—L,,qiy) is of the same order as Lgg; , while
for Re=200 and all \’s, the bubble surface could be as far
away as 100 Lgg. Thus, for steady arteriolar flows corre-
sponding to Re=0.2 and 2, the bubble surface is essentially
in direct contact with the EC surface compared to flows in
larger arteries. This can lead to larger endothelial cell defor-
mations and potentially determine the fate of the endothelial
cells lining the vessel wall.

In Figs. 11(a)-11(c), the variations of dimensionless
steady state bubble velocities, Ugeagy/ Umax for various Re’s
are plotted as a function of N and Hp. At a fixed Re, for
0.9 <A<, vgeaay decreases. This is due to both increased
occlusion with increase in size and increase in form drag
because of shape deformation. However, until A=0.95, the
deformation is very small (see Figs. 8 and 9) and the velocity
decrease is due entirely to increased size. For | <A =<1.05,
the reduction in velocity is very small because the deforma-
tion is largely a result of axial extension of the bubble and
thus the bubble cross section remains essentially independent
of \ [18] (see also Fig. 8).

The steady state flow fields and the wall shear stresses
will now be discussed both in an inertial frame and in a
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FIG. 12. Re=0.2, A=1.05: Velocity vectors and streamlines as
observed in [(a) and (b)] an inertial frame, and [(c) and (d)] a frame
moving with the steady state velocity of the bubble.

reference frame attached to the center of mass of the bubble
(moving frame). The steady state bubble velocities are such
that there exists a region near the vessel axis that moves
faster than the bubble. In the following, we restrict consid-
eration to Re=0.2 with A=1.05 (see Fig. 12). This is the only
case that will be considered since the flow field behaviors are
qualitatively similar for all the other cases. In Figs. 12(a) and
12(b), the velocity vectors and streamlines are plotted as
viewed in an inertial frame while in 12(c) and 12(d) they are
in the moving frame. The surface mobility of the bubble
gives rise to a Hill’s vortex which largely fills the volume of
the bubble accompanied by two weaker secondary internal
vortices, one near the front and the other near the rear stag-
nation points [see Figs. 12(c) and 12(d)]. The sense of rota-
tion of the secondary vortices is opposite to that of the pri-
mary vortex and the corresponding shear stresses will have
opposite signs. Two distinct bolus formations may be dis-
cerned, one at the front and one at the rear. Two stagnation
rings (convergent and divergent) appear on the bubble sur-
face at the points of intersection of the backward flow near
the wall and the recirculating boluses [see Fig. 12(d)]. With
increasing Re, the strengths of the secondary internal vorti-
ces increase (not shown here). The recirculating vortex seen
in the streamline plot of Fig. 12(b) is due to entrainment of
the fluid as it moves past the wall. This flow feature has
significant effects on the distribution of the shear stress and
its gradients (both temporal and spatial) at the cell surfaces.
This will be discussed in detail in a later section.

A quantity of interest is the time variation of shear stress
T at any given point on the vessel wall due to the movement
of the bubble. This point may in fact be located on the sur-
face of an EC that lines the vessel wall; wall shear stress,
T=—u(dv,/ dr). Let 7,; denote the basal shear stress which is
the value of the wall shear stress under fully developed flow
conditions in the absence of the bubble. Then, 7— 7.+ denotes
the “shear stress excess” experienced by the endothelial cell.
The values of 7, are listed for various Re’s in Table. VII.

Variations of shear stress excess normalized with 7. as a
function of dimensionless time t*, are displayed in Fig. 13
for Re=0.2, 2, and 200 with A=1.0 and Hp=0.45. Although
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TABLE VII. Basal shear stress (7, values for various Re’s at
Hp=0.45.

d (um) Re Basal shear stress, 7, (dyn/cm?)
40 0.2 56
100 2.0 104
2000 200 32.4

the magnitudes of shear stress excesses may differ, the varia-
tions are qualitatively similar in view of the similarities in
the steady state flow features. We now consider a represen-
tative case such as illustrated in Fig. 13(b) corresponding to
Re=2 and A=1. The time variation of the shear stress excess

(a): Re=10.2
3 : :
54
£
~
e
e
I
L ol
0 ) 1 6
t*
(b): Re =2
3

t*

(¢): Re =200

(T - Tref)/"r'ref'

FIG. 13. Shear stress excess as a function of time for a given
location on the endothelial cell surface lining the vessel wall for
Re=0.2, 2, and 200 with A=1.0.
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FIG. 14. Steady state flow field for Re=2 and A=1.0 as viewed
in an inertial frame (top) and in a reference frame attached to the
moving bubble (bottom). Numbers 1-8 correspond to dimension-
less times 1-8 in Fig. 13(b).

may be regarded as a solitary axial wave that traverses across
all points on the “endothelial cell” lined vessel surface (lu-
men). The wave speed is equal t0 vg,qy- The solitary wave at
a typical point on the surface of an endothelial cell is de-
picted in Fig. 13(b). This point is denoted by “A” in Fig. 14,
which shows steady state flow fields as viewed in both iner-
tial and moving frames. Numbers 1-8 in Fig. 13(b) corre-
spond to spatial locations 1-8 in Fig. 14. These numbers 1-8
in succession describe circumstances at A as the bubble ap-
proaches, traverses, and passes by this point. During stage
1-2, the bubble has a negligible effect at A. The pressure
gradient at A is nearly constant and the shear stress remains
at the basal value. During stage 2-3, local fluid velocity near
A is increased. Both the pressure gradient and the flow rate at
A are higher than the basal values and there is a correspond-
ing increase in the shear stress. During stage 3—4, the flow
decelerates and the shear stress gradually reduces to zero at
4. The pressure gradient reverses from being favorable to
adverse during this time. When A is located between 4 and 5,
flow reversal occurs due to the recirculating vortex (see Fig.
14), forming a shear stress regime of particular interest. This
effect arises due to the finite size of the bubble and the re-
sultant physical interplay of the trailing gas-liquid interface,
the bulk liquid, and the presence of the wall. The shear stress
switches direction becoming negative. During 5-6, there is
fluid entrainment and a local increase in fluid velocity along
the direction of motion of the bubble. This causes the shear
stress to abruptly become positive, with its maximum value
reached at point 6. The magnitude of shear stress at 6 is
higher compared to that at 3. During stage 6-7, the entrain-
ment effects become weaker and the shear stress gradually
returns to the basal value. Beyond 7, the bubble has effec-
tively passed by and no longer has any tangible influence on
the wall shear stress. During 7-8, the shear stress remains at
its basal value.

The solitary wave creates both temporal and spatial shear
stress gradients at the cell surface. These gradients coupled
with sign reversals result in both compression (negative
shear) and stretch (increased tension due to positive shear
excess) of the cell membrane. For all Re’s considered, the
spatial variation in shear stress excess is noted to occur over
the axial length of the bubble (L,,;) (see Fig. 14), and thus
is a function of A and Re [see Fig. 9(b)]. Now, let Lgc denote
the length of the endothelial cell along the streamwise direc-
tion. This is =140 um under physiological flow conditions
[61]. The ratio Ly, /Lgc provides an estimate of the spatial
variation of the shear stress along the surface of the cell.
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FIG. 15. Bubble axial length normalized with endothelial cell
width as a function of \.

These values are given in Fig. 15 as a function of \ for
various Re’s. Consider the particular circumstance when the
bubble is situated directly over a typical endothelial cell such
that the centers of the bubble and the cell surface are aligned
along the same radial line. For Re=0.2 and 2, L,,/Lgc
<1 and the bubble covers just a fraction of the endothelial
cell surface. For Re=200, L,;,/Lgc>10 and the bubble
covers many endothelial cell surfaces. Therefore, for Re
=0.2 and 2, the shear stress excess varies over a portion of
the endothelial cell surface, while for Re=200, this spatial
variation may be spread over a large number of neighboring
endothelial cells. The spatial variation of shear stress is pro-
nounced for flows in arterioles.

The major potential physiologic implications of the shear
stress solitary wave progression across the cell surface are
the induction of endothelial cell membrane stretch [62], ac-
tivation of mechanotransduction pathways [63,64], loss of
plasma membrane integrity [65], and plasma membrane
stress failure [62,66]. Studies of cell membrane mechanics
and mechanotransduction typically feature homogeneous
(i.e., whole cell) mechanical stress exposures without spatial
gradients being exerted across the cell surface (see [64]). In
experiments in which the influence of changes in shear stress
are examined, cell membrane mechanics are spatially hetero-
geneous, reflecting the spatial heterogeneity of the shear
stress exposure [63]. In such experiments, the rate of change
of the shear stress exposure is either extremely slow (on the
order of 20 dyn/cm? per min) or the magnitude of the step
change in shear stress is relatively small [63]. Our results
demonstrating the appearance of the shear stress solitary
wave are both temporally and spatially different from any-
thing that has been specifically studied experimentally [64].
The time rate of change of the shear stress during both the
descent to the absolute minimum value and the subsequent
rise to the absolute maximum value depicted in Fig. 13 are
such that the point location on the cell surface is subjected
first to a compressive impulse followed immediately by a
tensile impulse. The spatial shear stress gradients, their im-
pulsive nature, and the cell deformation they invoke may be
the cause of alterations of vascular reactivity, endothelial cel-
lular injury, and cell loss previously reported [67,68]. This
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FIG. 16. Dimensional bubble residence times (milliseconds) for
various Re’s as a function of \.

can happen through mechanisms involving stress failure of
the lipid bilayer, overload influx of calcium ions stimulated
by mechanosensing, alterations induced in cell cytoskeletal
elements, and pathways involving changes in focal adhesion
sites [64].

We next discuss the “bubble residence time.” The resi-
dence time is defined as the time taken by the axial length of
the bubble to pass over an endothelial cell. At steady state,
the bubble residence time 1is then given by (Lyia
+Lgc)/ Ugteaay- and is plotted in Fig. 16 for Hp=0.45. For
illustration, at Re=0.2, 2, and 200 and A=0.9, the vgg,qy
values are ~1.5, 5.0, and 22.0 cm/s, respectively, and the
corresponding steady state L,,;,; values for the bubble are
~36, 89, and 1750 um. With Lg-~ 140 pum, the residence
times are 0.012, 0.005, and 0.009 seconds, respectively. The
residence time for Re=0.2 is noted to be the highest. Fur-
thermore, at Re=0.2, the bubble interface is closest to the
cell surface (see Fig. 10) and the shear stress spatial gradient
is the largest (see discussions in Fig. 15). The cell damage
may be most pronounced in this case. For the case of Re
=2, the residence time is less than that for Re=200 by almost
a factor of 2. For Re=2, the bubble interface is very close to
the cell surface (see Fig. 10) compared to that at Re=200.
The shear stress spatial gradient is more pronounced for Re
=2 compared to Re=200 (see discussions in Fig. 15). In
view of these, although the residence time for Re=2 is lesser
compared to that at Re=200, the cell damage may still be
severe at Re=2. This is consistent with prior observations
that vascular responses, including vessel wall reactivity dur-
ing arterial gas embolism are most pronounced with slow
bubble motion (lower Re) slightly in advance of the cessa-
tion of blood flow [4,67,69,70].

D. Flow through horizontal vessels: A comparison

We now compare the results of the vertical vessel con-
figuration with that of the horizontal. For a given pressure
drop and vessel size, the effects of buoyancy are highest for
the smallest sized bubbles (i.e., for A=0.9). We shall con-
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FIG. 17. Comparison of steady state bubble shapes for horizon-
tal and vertical vessel configurations for (a) Re=0.2, A\=0.9, and (b)
Re=200, A=0.9.

sider two representative cases viz., Re=0.2, A=0.9, and Re
=200, A=0.9, both with H,=0.45. In Figs. 17 and 18, the
steady state bubble shapes and the time evolution of the
bubble velocities towards steady states for both the vessel
configurations are displayed. The results are identical. Such
identical results have also been obtained for H,=0.335 and
0.4 (results not shown). From Table VII, for Re=0.2, Fr
~0.9, and for Re=200, Fr~2.5. These imply that even for a
free stream bubble motion (in the absence of confining
walls), fluid inertia is of the same order as gravity along the
axial direction. In the presence of the confining wall and high
physiological flow rates (and pressure drop) such as in our
study, the effects of gravity in determining the bubble dy-
namics are substantially diminished. For nearly occluding
bubbles, axisymmetry holds and the gravitational effects are
negligible along the radial direction. For flows in arterioles
and small arteries, under normal physiological conditions,
the effects of gravity may not be important. This result is
consistent with the experimental results of Souders er al. [2]
who observed that flow effects dominate bubble motion in
smaller vessels.

0.9 — Vertical = = Horizontal
%5085} (a) i
0.80 0.5 1 1.5 2
t*
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05 2 4 6

FIG. 18. Comparison of evolution of bubble velocities for hori-
zontal and vertical vessel configurations for (a) Re=0.2, A=0.9, and
(b) Re=200, A=0.9.
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VI. CONCLUSIONS

A rigorous mathematical formulation has been developed
and numerically solved for the axisymmetric motion of a
finite-sized gas bubble moving in a blood vessel. Our simu-
lations may serve as benchmark results for problems related
to vascular bubble dynamics. The important physical insights
gained from the numerical computations are as follows:

(1) At steady state, for all \’s, the bubble interface is
closest to the endothelial cell surface in small arterioles
(Re=0.2). This distance is higher in large arterioles (Re=2)
and more so in small arteries (Re=200).

(2) For a finite-sized bubble, a recirculation vortex ap-
pears near its trailing meniscus. This creates both large tem-
poral and spatial gradients of shear stress on the endothelial-
cell lined vessel wall as the bubble approaches, moves over,

PHYSICAL REVIEW E 78, 036303 (2008)

and passes it by. Such spatial gradients are significantly
higher on endothelial cells in arterioles than in small arteries.

(3) For the parameters examined, the bubble residence
time is the highest in a small arteriole (Re=0.2). This is
followed by that for a small artery (Re=200), and is the
smallest for the large arteriole (Re=2).

(4) For occluding bubble motion in small arteries and ar-
terioles, the role of gravity is negligible. This is consistent
with experimental observations.
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